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J. Phys. A:  Gen. Phys., Vol. 5 ,  January 1972. Printed in Great Britain 

Analytic properties of the lattice Green function 

T MORITAT andT HORIGUCHI 
Department of Physics, Ohio University, Athens, Ohio 45701, USA 

MS received 21 April 1971, in revised form 22 July 1971 

Abstract. The theory of functions of a complex variable is applied to show that the lattice 
Green function G,(t ; r )  is an analytic function of the variable t ,  except when t is associated 
with a critical point. Here r denotes the position and t is the variable which represents the 
square of the frequency in lattice vibration problems, the energy in simplified problems of 
electron conduction and in spin wave theory. Singular behaviour of Gd( t ;  r) is given for r 
around its singular points U, for the case where U, are associated with the nondegenerate 
critical points. For the one dimensional system, the singular behaviour is also given for 
the degenerate critical points. Possibility of cancellation of the singular behaviour is sug- 
gested for some of the sites r .  The singular behaviour derived for Im C,(r; 0) is the same 
as that given by Van Hove. 

1. Introduction 

We consider a regular lattice. The lattice Green function is defined as the solution of 
thz difference equation of the form 

where t is a complex variable, r denotes a lattice site, and a are vectors from the lattice 
site r to its neighbours. d denotes 1, 2, or 3 according as the lattice is one, two, or three 
dimensional. The boundary value of G d ( t ;  r )  is zero when IYI  + CO. The solution is of 
the form 

where the integral is taken over the first or first several Brillouin zones in k space and the 
denominator v d  denotes the zone volume. Od(k) is given by 

od(k) = 1 J a  exp(ik . a) 
a 

which is a periodic function of k ;  the periods are the reciprocal lattice vectors K, which 
satisfy K .  U = 271 times an integer for all a. 

The lattice Green function Gd(t ;  r )  defined above occurs in the simplified problems 
of lattice vibrations (see eg equations (3.2) and (3.3) in a review article of Lifshitz and 
Kosevich 1966). In the article of Lifshitz and Kosevich (1966), variable E is used in 
place oft and the notation o,(k)’ is used in place of the present U&). When we consider 

t O n  leave of absence from Department of Applied Science, Faculty of Engineering, Tohoku University, 
Sendai, Japan. 
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68 T Morita and T Horiguchi 

the problems within the band, w2 - ic appears in the place of the variable t ,  where cu is 
the frequency of the vibration and E is an infinitesimal positive number. The function 
G d ( t ;  r )  occurs also in simplified treatments of electron conduction and in the theory 
of spin wave scattering of the Heisenberg magnet, when t is related to the energy (see 
eg Koster and Slater 1954, and Wolfram and Callaway 1963). The present status of the 
theory of the function G d ( t ;  r )  is described in a recent review of Katsura et a1 (1971). 

The imaginary part of the value at the origin of the lattice Green function, 
Im G,(s -ir ; O), is the level density g(s) of the system of harmonically coupled oscillators 

1 
g(s) = - Im Gd(s - ic; 0) (1.4) 

where s takes on real values and E is an infinitesimal positive number. General properties 
of the level density g(s) have been discussed by Van Hove (1953) in terms of behaviours 
of the surface of constant wd(k) in k space. In the present paper, we present a general 
discussion of Gd(t ;  r) as a complex function of complex t on the basis of the general 
theory of a complex variable. The basic assumption is that Wd(k)  occurring in (1.2) is an 
analytic function of each of the components of k, say k, ,  k, ,  as well as k, for the three 
dimensional case, when we assume complex values for these variables. This assumption 
is satisfied for W d ( k )  defined by (1.3) if J ,  is of finite range : for example, if there exists a 
distance R such that 

J ,  = 0 if la/ > R. (1.5) 

We notice that the lattice Green functions for two and three dimensional lattices are 
integrals of the ones for one and two dimensional lattices, respectively. With this obser- 
vation, we first investigate the one dimensional case in detail, and then proceed to the 
two and three dimensional cases. The purposes of the following three sections are to 
give a proof that G,(t; r )  is analytic with respect to t when t is not associated with the 
critical point k ,  where t = wd(kc) and aod(k,)/ak, = 0. $4 2,3 and 4 are devoted to the 
linear, square, and cubic lattices, respectively. In $ 5 ,  the singular behaviour due to the 
nondegenerate critical point is given for Gd( t ;  r) .  For a one dimensional lattice, the 
singular behaviour due to the degenerate critical point is given in $ 2 and the Appendix. 
$ 6 is for conclusion. 

In the general problems of lattice vibrations, we meet with a more complex lattice 
Green function (eg Maradudin er al 1958 and Maradudin 1965). The generalization of 
our results to that case is discussed in 0 6. 

71 

2. One dimensional lattice 

We consider a linear chain with equally spaced lattice sites. By using the spacing of the 
lattice sites as the unit of length, the lattice Green function for this system is given by 

cosnz 
G , ( t ;  n )  = '1 dz- 27T - n  t-cu,(z) 

where the variable t takes on complex values and n is an integer. 
By definition (1.3), wl(z) is a periodic function of z with period 271, and so is the 

integrand of (2.1). Hence the limits of the integration - 71 and 71 may be replaced by an 
arbitrary angle 0 and 0+2n. The function wl(z) is assumed to be an analytic function 
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of z for complex variable z. The integrand itself is, therefore, an analytic function of z 
except at the poles which can occur at the zeros of t-w,(z). We shall denote the zeros 
as zo 

or 
t-w1(z0) = 0 (2.2) 

zo = 0; yt) .  (2.3) 

For a real or a complex value oft, some of zo will be real and some others will be complex. 
First we consider the case when Im zo is nonzero for all zo. The analytic function 

t = o l (zo )  and its inverse zo = o;'(t) induce continuous mappings. Hence when t is in 
a small region A around the given value oft, Im zo remains nonzero (cf figure l(a) and (b)). 
In that case, the integrand of (2.1) and its derivative with respect to t are analytic functions 
of both variables t and z for t inside of A and z on the path of the integration (2.1), and 
we confirm that G(t ;  n)  is analytic with respect to t at its given value (see eg Whittaker 
and Watson 1935). 

(a) t plane I zo plane (b)  

Figure 1. (a) Small region A in the t plane and (6He) various cases of its mapping in the 
zo plane and the path of integral from --I[ to I[ or from U to u f 2 n  for (2.1). 

In the second place, we consider the case where some of zo occur on the real axis or 
in its immediate neighbourhood and they are isolated by a nonzero distance from 
each other. Then we can deform the path of the integration from the straight line to a 
curved line which is separated by a nonzero distance from all the zo (cffigure l(c)). When 
- 7c and 7c are in an immeciate neighbourhood of one of zo,  we choose the starting point 
of the integration to an angle c which is not near to any of zo (cf figure l(d)). By such a 
choice of the path of integration, we confirm that the integral is analytic for this case also, 
where the same argument as in the preceding paragraph is used. 

Now the cases excluded from the above discussions are the cases when two or more 
zo appear on the real axis or in its immediate neighbourhood with an infinitesimal 
distance between them; that is t = wl(zo) and wl(zo+c5)-w1(zo) = 0 where 6 'v 0 
(cf figure l(e)). As wl(z) is an analytic function we have 

for this case. This is the only case when we cannot prove that G,( t ;  n) is analytic with 
respect to t .  The t given by the first equation of (2.4) will be denoted by o, when the 
latter equation is satisfied by a real value of zo . 
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Let a real zo be a zero of vth order of the denominator of (2.1) and v 2 2, when 
t = 0,. Then in the neighbourhood of z, there are v values of z for which wl(z) is 
equal to t if t -w ,  z 0 by a well known theorem of the theory of analytic functions (see 
eg Ahlfors 1953). In fact, when t-w, N 0, the zero of 

t-w1(z) = ( t  - w,) + a(z- 2,)’ + O{(z- Z0)’+ 1) 

z = z, + ([U, - t + O{(z-  Z , ) V +  l)]/u)l”’ = z,{(w,- t ) / a )  l’V+ O{(O, - t p ;  

occurs at 

where a is a nonzero constant. For a suitable choice of the t - U,, some of the zeros 
appear above the real axis and some below the real axis if I m t  N 0. If we deform 
the path of integration to a nonzero distance from z,, the integral becomes an analytic 
function oft ,  but we have an additional contribution from the poles which were passed 
through in the deformation of the path. If one deforms the path to be above the real 
axis, one obtains the following contribution from each pole just above the real axis: 

cos nz, 
i U l ’ V Y ( ~ ,  - t)’ - l’v [ l  +o{(w,- t ) l~v)]  

or 
sin nz, sin[n{(w, - t ) /a}  I ”  + O{(O, - t ) 2 / ” } ]  

al’”V(w,-t)l- 1’”[1 + O { ( w , - t ) ’ ~ ~ } ]  
- i  

(2.5) 

according as cos nz, # 0 or cos nz, = 0, where Im{(w, - t ) /a}  l i V  > 0. In order to obtain 
the singular behaviour at t z w,, we have to take a summation of (2 .5)  or (2.6) over all 
z, which satisfy (2.4) for a given value of t = w,. In particular we notice that, if (2.4) is 
satisfied at a point z,, it is also satisfied at - z, for our lattice. When the contributions 
for zo and -zo are summed, (2.5) contributes twice that expression but (2.6) cancels 
exactly. That means we do not have a singularity if cos nz, = 0 is satisfied even if (2.4) is 
satisfied. 

We conclude this section by the following theorem: G,( t ;  n) is an analytic function 
of t  except when there exists such a real z, that the equations wl(zo) = t and w;(z,) = 0 
as well as cos nz, # 0 are satisfied. If such is the case, the singular term is obtained by 
taking a summation of the contributions (2.5) over all vth roots {(U, - t ) /a)  ‘ I v  with a 
positive imaginary part for all z, satisfying (2.4). An alternative expression for (2.5) is 
given in the Appendix for even values of v. 

For real z,, t = wl(zo) is real. Hence Gl( t ;  n) can be singular at t on the real axis 
and is always analytic if Im t is not zero. 

3. Square lattices 

The lattice Green function for the square (rectangular) lattice is expressed as an integral 

dy cos myGl(t ;  n; y )  

where the integrand is the lattice Green function for a one dimensional system 
1 

(3.1) 
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where m and n are integers. The spacings of the layers occupied by the lattice sites are 
used as the units of length for the y and z directions, respectively. By using the arguments 
in the preceding section, we see that G l ( t ;  n ;  y )  defined by (3.2) is analytic with respect to 
t as well as with respect to y, except when a real value zo exists such that 

(3 .3~)  

and cos nz, # 0. 
We now consider the integral (3.1) for a fixed t inside a neighbourhood A of a given 

point on the t plane. If all the singular points of the function G,(t ; n ; y )  as a function of y 
are either complex with a nonzero imaginary part or are isolated when they are on the 
real axis or in its immediate neighbourhood, one can choose the path of integration 
in such a way that the integrand of (3.1) and its derivative with respect to t are analytic 
functions of both variables t and y for t inside of A and y on the path of integration. Then 
one confirms as in the preceding section that the integral (3.1) is analytic as a function oft 
in the neighbourhood of the point in the t plane under consideration. The only points t 
at which the integral cannot be shown to be analytic are the cases where the two or more 
singularities of G,( t ;  n ;  y )  as a function of y exist with an infinitesimal separation 6 
on the real axis or in its immediate neighbourhood. For such a case, we shall assume 
that those singularities occur at yo and y o  + 6. The conditions that the integral G , ( t ;  n ;  y )  
given by (3 .2 )  is singular at y = y o  are given by (3.3~).  The corresponding condition for the 
point y o  + 6 is the existence of real z, such that 

(3.3b) 

and cos nz, # 0. 
Here we shall assume that yo and y o  + 6 are the only singular points, on the real axis 

or in its neighbourhood, of G,(t ; n ;  y) ,  and that real z ,  and z, satisfying (3 .3~)  and (3.3b) 
are uniquely determined. Furthermore we assume that the z ,  and z ,  occurring in (3.3) 
are different from each other. In that case, we divide G , ( t ;  n ;  y )  into two parts as follows : 

G l ( t ;  n ;  y )  = G\”(t; n ;  y)+G\”(t; n ;  y )  (3.4) 

where we assume z ,  < z ,  without loss of generality. The first integral (3.5) has a singu- 
larity at y = y o  and the second (3.6) at y = y o  + 6. When (3.4) is substituted into (3. l), 
one finds that the contributions due to each of (3.5) and (3.6) and hence the total (3.1) 
are analytic with respect to t in the neighbourhood of the t under consideration. 

We cannot show that G 2 ( t ;  m, n) is analytic if zo = z l .  Then (3.3) reduces to 

and cos nz, # 0. The above analysis is concluded by the theorem that, if and only if there 
exist a set of real yo and real zo which satisfy (3.7), t = o,(y, ,  zo) is a singular point of the 
lattice Green function G2(t ; m, n). 
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When cos my, = 0, we interchange the roles of y and z in the above discussion. Then 
one concludes that the t is not a singularity even if (3.7) is satisfied for a set of values of 
yo and zo. 

The argument given at the end of the preceding section is applied to show that 
G2(t ; m, n) can be singular only at t on the real axis and is analytic if Im t is not equal to 
zero. 

4. Cubic lattices 

We express the lattice Green function for the cubic (orthorhombic) lattices as follows : 

dx cos lxG,(t; m, n ;  x) (4.1 ) 

where 
” cosmycosnz 

G,(t; m, n ;  x) = ~ (4.2) 

and 1, m and n are integers. 

be singular only if 
When one proceeds as in the preceding section, one first sees that G3(t ;  1, m, n )  can 

and cos my, # 0, cos nz,  # 0, cos my, # 0 and cos nz, # 0. If y o  and y ,  are different, 
we divide the integral (4.2) over y into two parts and find that G,( t ;  I ,  m, n) must be 
analytic etc by the same argument as in the preceding section. As a result, we conclude 
that G,(t; I ,  m, n) is singular at t only if there exists a set of real xo, yo and zo such that 

(4.4) 

and cos lx, # 0, cos my, # 0 and cos nz, # 0. 

occur only at real values of t .  
By the argument given at the end of 4 2, one sees that the singularities of G3(t ; 1, m, n) 

5. Nondegenerate critical pints 

The conclusion of the preceding sections is that the lattice Green function G(t ;  r )  is 
analytic if Im t is finite. If oc is one of the singularities, it is associated with a kc  with 
real components satisfying 
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(5.1) represents either (2.4), (3.7), or (4.4). A point k,  for which ihd(k,)/i%, = 0 is satisfied 
is called a critical point. It is called a ‘nondegenerate’ critical point if the determinant of 
the second derivatives, the hessian, of Od(kc) is not zero. 

We shall give the behaviour of Gd(t; r) at t near 0, which is associated only with non- 
degenerate critical points. We shall denote the total number of those critical points k, 
for which is equal to the given value U,, by n, and the n values of k,  by kL1), 
k(c2), . . . and k‘,“). We divide the total region R of the integration in (1.2) into small regions 
Ai around k f ) ,  and the remaining R’ = R - Cy= Ai : 

If t is so near to 0, that ( t  - wd(k)l is nonzero as long as k is outside of the small regions 
Ai,  we confirm that the first term on the right hand side is analytic with the aid of an 
argument similar to that given in the preceding sections. 

In evaluating the contributions from the integral over Ai ,  we expand md(k) in powers 
of k - kt ) ,  choose suitable coordinates and write as 

d 

Wd(k) = 0, - a j t f  + O(t3) 
j =  1 

(5.3) 

(Van Hove 1953). The coefficients aj may be positive or negative. The total number of 
positive ai is called the index of the critical point of Wd(k) at k t )  and is denoted by 
E. (0 < 2 < d). When 0, is the maximum value of q (k ) ,  I = d, ‘and when 0, is the 
minimum, A = 0. If 2 < d and 0 < I < d, w, corresponds to a saddle point of the plane 
or hyperplane md(k) as a function k.  The integrations with respect to are taken over the 
region Ai.  The singular behaviours are expressed in terms of the parameters vd, 
Ad = Iaj11i2 and the jacobian J of the variable transformation from k - k t )  to t j .  
The terms C in the following expressions are complex constants. 

(i) One dimension : 

i ZJ 1 
iA A l v l  ( t - ~ , ) ” ~  

G,(t; 0) C+- - (5.4) 

where E. = 0 or 1. ( t - ~ , ) ” ~  denotes the positive square root (t-coc)1’2 when t-CO, is 
positive. When t is assumed to be a complex number with negative imaginary part, the 
argument of t-a, is between 0 and - 7 1  and that of ( t - ~ , ) ” ~  is chosen between 0 and 
- 742, for the reason of analyticity. It follows that: 

(S - 0,)1/2 

- i(o, - s)li2 

s > 0, 

s < 0, 
( t - 0 , ) 1 / 2  = 

if t = s - i E  (E 2 0). When we have only one of each of minimum and maximum values of 
o , ( k )  where A = 0 and 1, respectively, the curves of the real and imaginary parts of the 
lattice Green function G,(s-ic; r )  take the same singular characters as figure 2. One 
notices that (5.4) must be equivalent to (2.5) if n = 0 and v = 2, where J = 1 and v 1  = 2n. 
A reduction of (2.5) to the form of (5.4) is given in the Appendix, for the case when v is 
even. 

(ii) Two dimensions : 

715 
iAA2v2 

G2(t; 0,O) N C+- ln(t - 0,) 
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I 

0.5 

- 5.0 -2 0 0 2 0  
S 

where = 0,l or 2.  ln(t - 0,) is real when t -0, is positive. If t is complex with negative 
imaginary part, the imaginary part of ln(t-0,) is chosen between 0 and --7c for the 
analyticity of the function. In particular, one has 

50 

ln(s - 0,) 

ln(w, - s) - xi 

s > w, 

s < 0, 
ln(t-0,) = (5.7) 

if t = s - ic(c 0). When we have only one of each of these critical points with i = 0, 1 
and 2, respectively, we have the same singular characters for the real and imaginary parts 
of G,(s - ic, v )  as the curves given in figure 3 ; those curves were first given by Katsura and 
Inawashiro (1971). 

2.5 

4.0 
1.0 s 

- 4  0 

, 
I 
I 

i 
- 2.5 

Figure 2. The real and imaginary parts of Gl(s -ir; 0) for the one dimensional lattice with 
the nearest neighbour interaction; G ,  and GI denote the real and the imaginary part, re- 
spectively. 

Figure 3. The real and imaginary parts of G,(s - ic; 0,O) for the square lattice with nearest 
neighbour interaction; G ,  and GI denote the real and the imaginary part, respectively (from 
Horiguchi et al 1971). 
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(iii) Three dimensions : 

i 2z2J 
1’ A,v3 

G 3 ( t ;  O,O, 0) N C + T  - ( t -~, . )”~ 

where I = 0,1,2 or 3. When we have one of each of the critical points with I = 0,1,2 
and 3, respectively, the curves for the real and imaginary parts of G3(s-ic; r )  take the 
same singular characters as given by figure 4. 

0 5  

- 5  0 5 0  

-0 5 

Figure 4. The real and imaginary parts of G,(s-ic, 1,0,0) for the simple cubic lattice with 
the nearest neighbour interaction, G, and G,  denote the real and the imaginary part, re- 
spectively (from Horiguchi 1971) 

The singular behaviours (5.4), (5.6) and (5.8) due to the critical point k!) are for 
G,(t; r = 0). If r # 0, the right hand sides of these equations must be multiplied by the 
constant exp(ik2) . r). 

In order to obtain the singular behaviour at a singularity w,, a summation must be 
taken over all the contributions due to the critical points k!) associated with the singular 
point 9, , It may happen that the singular behaviour is exactly cancelled. In the preced- 
ing sections, we found that if cos@, . r) = 0, the critical point does not result in a singu- 
larity. In that case, the singular behaviours at k,  and at - k ,  are found to cancel with 
each other exactly; note that - k ,  is a critical point if k,  is for lattices with inversion 
symmetry as considered in the preceding sections. Another example of such cancellation 
will be discussed in a subsequent paper. 

The singular behaviours of the imaginary part of the expressions obtained for 
G2(s-ic;0,0)and G,(s-ic;O,O,O)areinagreement with thosegiven byVanHove(1953). 

6.  Conclusion 

The discussions of the lattice Green function in the text are given for the linear, square 
and cubic lattices. For other lattices also, the lattice Green function is expressed as a 
multiple integral over real variables and the integrand can be regarded as an analytic 
function of those variables when complex values are assumed to them. Then we can 
apply the same argument to the integral. It may become necessary in the arguments to 
recall the fact that the region of the integration is the first one or several Brillouin zones 
in the reciprocal lattice space and the integrand is a periodic function in that space. In 
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consequence, we reach the same conclusion : the lattice Green function becomes singular, 
only if the integrand has a pole of second or higher order as a function of each integration 
variable at a set of real values of the variables. 

The singular behaviours due to the nondegenerate critical points are given in $ 5. 
For the one dimensional lattice, the singular behaviours due to the nondegenerate 
critical points are given in $ 2. 

Before concluding this paper, we notice that the only assumption in the course of the 
arguments in the text is that as a function of each of the components of k is analytic 
within a region of nonzero width surrounding the real axis. For instance, the arguments 
are valid even if has branch points in so far as all of the imaginary parts of the 
branch points are not equal to zero. 

In the general problem of lattice vibrations, we consider a lattice composed of cells 
involving a number of atoms. The lattice Green function which occurs in that case takes 
the form 

x exp(ik . (x(lic)-x(I)ic'))} (6.1) 

where x(k) is the equilibrium position of the Kth atom in Eth cell, M ,  is the mass of the 
icth atom, o,(k)  is the frequency ofjth mode with wavevector k,  and wa(icl&j) is the ath 
component of the unit polarization vector of the Kth atom for the mode specified by 
(k j )  (see eg equation (2.1.18) of a review article of Maradudin 1965). 

We shall assume that w,(k)' and wa(iclkj) are analytic functions of the components of 
k,  when the components take complex values. Then we can apply the arguments given 
in the text to each of the integrals over k occurring in (6.1). From the analytic behaviour 
of the integral for each value of j, we obtain the same conclusion as stated above for the 
total function (6.1). The leading terms of the singular behaviours at the nondegenerate 
critical points are obtained by using the results of $5, by introducing the factor ap- 
propriate for the critical point and summing the singular behaviours due to different j .  

As mentioned above, the conclusion is extended to the cases when wj(k)' and 
w,(lclkj) are analytic within a region of nonzero width surrounding the real axis. For 
instance, the conclusion is valid for the lattice Green function occurring in a problem of 
the simple cubic diatomic lattice where ~ , ( k ) ~  has branch points with nonzero imaginary 
part (see eg Maradudin er a1 1958). 

Appendix. Reduction of (2.5) and (2.6) to the form of (5.4) 

It is shown in $ 2 that the leading term with singular behaviour at w, = wl(zo) is obtained 
as the sum of contributions of all the poles around zo just above the real axis, or as the 
sum due to those just below the real axis. The contribution from each pole is given by 

where the sum must be taken over all different vth roots satisfying 

Im((w, - t ) /a}  ' I v  2 0. (A. 2) 

The results obtained by adopting the upper and the lower sign, respectively, must be the 
same. We restrict the following discussion to even values of v. 
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If a < 0, we shall choose the lower signs and then (A.l) with (A.2) reads as follows : 

cos nz, 
i 
Vlal"v(t-wc)1- l j v  

(A.3) 

where 

Im(t - w , ) ' / ~  < 0. (A.4) 
When a < 0, ,I = 0 and (A.3) coincides with (5.4). 

If a > 0, we use the upper signs in (A.l) and (A.2), and we have 

cos nzo 
vial l/'(w, - t )  1 - l / v  i 

where 

Im(o, - t)'jv > 0. ('4.6) 
We notice here that, when Im t = Im(t-w,) is negative, all the vth roots (CO,- t)liv 
which satisfy (A.6) are obtained by the relation 

from the vth roots (t-w,)"" which satisfy (A.4), where i, E exp(ni/v) and hence i, = i. 
Substituting (A.7) into (AS), we obtain 

i cos nz, 
i, ~ l a l ~ ~ ~ ( t - ~ , ) ~ - ~ ~ ~ '  
- 

The singular behaviour of G,(t;  n) at t N w, = wl(zo) is now given by the sum of (A.8) 
over all (t - w,)liV satisfying (A.4), for the case of a > 0. (A.3) and (A.8) are combined to 
the form 

1 cos nz,  
(i,)' v(al ' jv(t-  0,) 1 - l j v  

where ,I = 0 or 1 according as a < 0 or a > 0. (A.9) with (A.4) gives (5.4) when v = 2 
and n = 0. 
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